29 research outputs found

    Design of a new method for detection of occupancy in the smart home using an FBG sensor

    Get PDF
    This article introduces a new way of using a fibre Bragg grating (FBG) sensor for detecting the presence and number of occupants in the monitored space in a smart home (SH). CO2 sensors are used to determine the CO2 concentration of the monitored rooms in an SH. CO2 sensors can also be used for occupancy recognition of the monitored spaces in SH. To determine the presence of occupants in the monitored rooms of the SH, the newly devised method of CO2 prediction, by means of an artificial neural network (ANN) with a scaled conjugate gradient (SCG) algorithm using measurements of typical operational technical quantities (indoor temperature, relative humidity indoor and CO2 concentration in the SH) is used. The goal of the experiments is to verify the possibility of using the FBG sensor in order to unambiguously detect the number of occupants in the selected room (R104) and, at the same time, to harness the newly proposed method of CO2 prediction with ANN SCG for recognition of the SH occupancy status and the SH spatial location (rooms R104, R203, and R204) of an occupant. The designed experiments will verify the possibility of using a minimum number of sensors for measuring the non-electric quantities of indoor temperature and indoor relative humidity and the possibility of monitoring the presence of occupants in the SH using CO2 prediction by means of the ANN SCG method with ANN learning for the data obtained from only one room (R203). The prediction accuracy exceeded 90% in certain experiments. The uniqueness and innovativeness of the described solution lie in the integrated multidisciplinary application of technological procedures (the BACnet technology control SH, FBG sensors) and mathematical methods (ANN prediction with SCG algorithm, the adaptive filtration with an LMS algorithm) employed for the recognition of number persons and occupancy recognition of selected monitored rooms of SH.Web of Science202art. no. 39

    Novel proposal for prediction of CO2 course and occupancy recognition in Intelligent Buildings within IoT

    Get PDF
    Many direct and indirect methods, processes, and sensors available on the market today are used to monitor the occupancy of selected Intelligent Building (IB) premises and the living activities of IB residents. By recognizing the occupancy of individual spaces in IB, IB can be optimally automated in conjunction with energy savings. This article proposes a novel method of indirect occupancy monitoring using CO2, temperature, and relative humidity measured by means of standard operating measurements using the KNX (Konnex (standard EN 50090, ISO/IEC 14543)) technology to monitor laboratory room occupancy in an intelligent building within the Internet of Things (IoT). The article further describes the design and creation of a Software (SW) tool for ensuring connectivity of the KNX technology and the IoT IBM Watson platform in real-time for storing and visualization of the values measured using a Message Queuing Telemetry Transport (MQTT) protocol and data storage into a CouchDB type database. As part of the proposed occupancy determination method, the prediction of the course of CO2 concentration from the measured temperature and relative humidity values were performed using mathematical methods of Linear Regression, Neural Networks, and Random Tree (using IBM SPSS Modeler) with an accuracy higher than 90%. To increase the accuracy of the prediction, the application of suppression of additive noise from the CO2 signal predicted by CO2 using the Least mean squares (LMS) algorithm in adaptive filtering (AF) method was used within the newly designed method. In selected experiments, the prediction accuracy with LMS adaptive filtration was better than 95%.Web of Science1223art. no. 454

    Wavelet-based filtration procedure for denoising the predicted CO2 waveforms in smart home within the Internet of Things

    Get PDF
    The operating cost minimization of smart homes can be achieved with the optimization of the management of the building's technical functions by determination of the current occupancy status of the individual monitored spaces of a smart home. To respect the privacy of the smart home residents, indirect methods (without using cameras and microphones) are possible for occupancy recognition of space in smart homes. This article describes a newly proposed indirect method to increase the accuracy of the occupancy recognition of monitored spaces of smart homes. The proposed procedure uses the prediction of the course of CO2 concentration from operationally measured quantities (temperature indoor and relative humidity indoor) using artificial neural networks with a multilayer perceptron algorithm. The mathematical wavelet transformation method is used for additive noise canceling from the predicted course of the CO2 concentration signal with an objective increase accuracy of the prediction. The calculated accuracy of CO2 concentration waveform prediction in the additive noise-canceling application was higher than 98% in selected experiments.Web of Science203art. no. 62

    The design of an indirect method for the human presence monitoring in the intelligent building

    Get PDF
    This article describes the design and verification of the indirect method of predicting the course of CO2 concentration (ppm) from the measured temperature variables Tindoor (degrees C) and the relative humidity rH(indoor) (%) and the temperature T-outdoor (degrees C) using the Artificial Neural Network (ANN) with the Bayesian Regulation Method (BRM) for monitoring the presence of people in the individual premises in the Intelligent Administrative Building (IAB) using the PI System SW Tool (PI-Plant Information enterprise information system). The CA (Correlation Analysis), the MSE (Root Mean Squared Error) and the DTW (Dynamic Time Warping) criteria were used to verify and classify the results obtained. Within the proposed method, the LMS adaptive filter algorithm was used to remove the noise of the resulting predicted course. In order to verify the method, two long-term experiments were performed, specifically from February 1 to February 28, 2015, from June 1 to June 28, 2015 and from February 8 to February 14, 2015. For the best results of the trained ANN BRM within the prediction of CO2, the correlation coefficient R for the proposed method was up to 92%. The verification of the proposed method confirmed the possibility to use the presence of people of the monitored IAB premises for monitoring. The designed indirect method of CO2 prediction has potential for reducing the investment and operating costs of the IAB in relation to the reduction of the number of implemented sensors in the IAB within the process of management of operational and technical functions in the IAB. The article also describes the design and implementation of the FEIVISUAL visualization application for mobile devices, which monitors the technological processes in the IAB. This application is optimized for Android devices and is platform independent. The application requires implementation of an application server that communicates with the data server and the application developed. The data of the application developed is obtained from the data storage of the PI System via a PI Web REST API (Application Programming Integration) client.Web of Science8art. no. 2

    A robust approach for acoustic noise suppression in speech using ANFIS

    Get PDF
    The authors of this article deals with the implementation of a combination of techniques of the fuzzy system and artificial intelligence in the application area of non-linear noise and interference suppression. This structure used is called an Adaptive Neuro Fuzzy Inference System (ANFIS). This system finds practical use mainly in audio telephone (mobile) communication in a noisy environment (transport, production halls, sports matches, etc). Experimental methods based on the two-input adaptive noise cancellation concept was clearly outlined. Within the experiments carried out, the authors created, based on the ANFIS structure, a comprehensive system for adaptive suppression of unwanted background interference that occurs in audio communication and degrades the audio signal. The system designed has been tested on real voice signals. This article presents the investigation and comparison amongst three distinct approaches to noise cancellation in speech; they are LMS (least mean squares) and RLS (recursive least squares) adaptive filtering and ANFIS. A careful review of literatures indicated the importance of non-linear adaptive algorithms over linear ones in noise cancellation. It was concluded that the ANFIS approach had the overall best performance as it efficiently cancelled noise even in highly noise-degraded speech. Results were drawn from the successful experimentation, subjective-based tests were used to analyse their comparative performance while objective tests were used to validate them. Implementation of algorithms was experimentally carried out in Matlab to justify the claims and determine their relative performances.Web of Science66631030

    Application of variations of the LMS adaptive filter for voice communications with control system

    Get PDF
    U ovom se radu opisuje predložena metoda za optimalno podešavanje parametara varijacija LMS adaptivnog filtera kod prigušenja aditivne buke iz govornog signala. Izabrana varijacija LMS adaptivnog poništača buke je implementirana na TMS320C6713 DSK. U praksi je ovo primijenjeno na govornu komunikaciju s upravljačkim sustavom za praćenje operativno-tehničkih funkcija u zgradama.This paper describes a proposed method for optimal adjustment parameters of variations of the LMS adaptive filter in the application of suppression of the additive noise from the speech signal. Selected variation of the LMS adaptive noise canceller is implemented on the TMS320C6713 DSK. This practical realization was used in a voice communication with a control system for controlling of operating – technical functions in buildings

    Fiber-optic interferometric sensor for monitoring automobile and rail traffic

    Get PDF
    This article describes a fiber-optic interferometric sensor and measuring scheme including input-output components for traffic density monitoring. The proposed measuring system is based on the interference in optical fibers. The sensor, based on the Mach-Zehnder interferometer, is constructed to detect vibration and acoustic responses caused by vehicles moving around the sensor. The presented solution is based on the use of single-mode optical fibers (G.652.D and G.653) with wavelength of 1550 nm and laser source with output power of 1 mW. The benefit of this solution lies in electromagnetic interference immunity and simple implementation because the sensor does not need to be installed destructively into the roadway and railroad tracks. The measuring system was tested in real traffic and is characterized by detection success of 99.27% in the case of automotive traffic and 100% in the case of rail traffic.Web of Science2662995298

    Research on micro-mobility with a focus on electric scooters within Smart Cities

    Get PDF
    In the context of the COVID-19 pandemic, an increasing number of people prefer individual single-track vehicles for urban transport. Long-range super-lightweight small electric vehicles are preferred due to the rising cost of electricity. It is difficult for new researchers and experts to obtain information on the current state of solutions in addressing the issues described within the Smart Cities platform. The research on the current state of the development of long-range super-lightweight small electric vehicles for intergenerational urban E-mobility using intelligent infrastructure within Smart Cities was carried out with the prospect of using the information learned in a pilot study. The study will be applied to resolving the traffic service of the Poruba city district within the statutory city of Ostrava in the Czech Republic. The main reason for choosing this urban district is the fact that it has the largest concentration of secondary schools and is the seat of the VSB-Technical University of Ostrava. The project investigators see secondary and university students as the main target group of users of micro-mobility devices based on super-lightweight and small electric vehicles.Web of Science1310art. no. 17

    Application of variations of the LMS adaptive filter for voice communications with control system

    Get PDF
    U ovom se radu opisuje predložena metoda za optimalno podešavanje parametara varijacija LMS adaptivnog filtera kod prigušenja aditivne buke iz govornog signala. Izabrana varijacija LMS adaptivnog poništača buke je implementirana na TMS320C6713 DSK. U praksi je ovo primijenjeno na govornu komunikaciju s upravljačkim sustavom za praćenje operativno-tehničkih funkcija u zgradama.This paper describes a proposed method for optimal adjustment parameters of variations of the LMS adaptive filter in the application of suppression of the additive noise from the speech signal. Selected variation of the LMS adaptive noise canceller is implemented on the TMS320C6713 DSK. This practical realization was used in a voice communication with a control system for controlling of operating – technical functions in buildings

    Testing of the voice communication in smart home care

    Get PDF
    This article is aimed to describe the method of testing the implementation of voice control over operating and technical functions of Smart Home Come. Custom control over operating and technical functions was implemented into a model of Smart Home that was equipped with KNX technology. A sociological survey focused on the needs of seniors has been carried out to justify the implementation of voice control into Smart Home Care. In the real environment of Smart Home Care, there are usually unwanted signals and additive noise that negatively affect the voice communication with the control system. This article describes the addition of a sophisticated system for filtering the additive background noise out of the voice communication with the control system. The additive noise significantly lowers the success of recognizing voice commands to control operating and technical functions of an intelligent building. Within the scope of the proposed application, a complex system based on fuzzy-neuron networks, specifically the ANFIS (Adaptive Neuro-Fuzzy Interference System) for adaptive suppression of unwanted background noises was created. The functionality of the designed system was evaluated both by subjective and by objective criteria (SSNR, DTW). Experimental results suggest that the studied system has the potential to refine the voice control of technical and operating functions of Smart Home Care even in a very noisy environment.Web of Science5art. no. 1
    corecore